Document Type



Virginia Institute of Marine Science

Publication Date



Special Report in Applied Marine Science and Ocean Engineering (SRAMSOE) No. 467


Relative sea level (RSL) observations since 1969 at U.S. tide stations exhibit trends in RSL rise rate and acceleration that vary in response to both global and regional processes. Trend histories display a high degree of similarity between locations in coastal regions that are experiencing similar processes. With the exception of the U.S. Northeast Coast and Alaska,every other coastal location in the continental U.S. has experienced an upturn in RSL rise rate since 2013-2014 despite wide differences in the magnitude and trending direction of RSL acceleration. High RSL acceleration along the U.S. Northeast Coast has trended downward since 2011 while low RSL acceleration along the U.S Southeast Coast has recently trended upward in response to changes likely associated with ocean dynamics and ice sheet loss. RSL change in the sedimentary basins of the central U.S. Gulf Coast region is highly dependent on local rates of vertical land movement (VLM). VLM here varies over relatively short time scales amid changing patterns of subsurface water and hydrocarbons extraction.RSL rise rates of 5 mm/year or more aided by weak acceleration in Louisiana and Texas project a total RSL rise of between 0.4 and 0.5 meters above 1992 MSL by the year 2050; other Gulf and East Coast locations will experience equal or greater rise if upward trends in acceleration continue. Low and mostly downward trends in RSL rise rate at central U.S. West Coast locations have recently reverted to a pattern of upward trends with higher rise rates. Rise rates prior to 2013 appear to have been restrained by deceleration now trending toward acceleration. A combination of tectonic plate convergence and glacial isostatic adjustment makes the non-contiguous U.S. coastal state of Alaska unique with regard to RSL trends. Land emergence, rather than subsidence, produces consistent trends of falling RSL in Alaska.



Sea Level Change, Human Impacts, United States