Date Thesis Awarded

5-2015

Document Type

Honors Thesis

Degree Name

Bachelors of Science (BS)

Department

Chemistry

Advisor

David Kranbuehl

Committee Member

John Poutsma

Committee Member

Michael Leruth

Committee Member

Robert Orwoll

Abstract

Abstract Polyimides are a commercially useful material, typically used in air and space applications due to high heat resistance, impressive mechanical strength, and self-extinguishing properties. In recent years, graphene has come of interest in the material science world. However, the pristine, carbon-honeycomb allotrope is extremely hydrophobic, chemically unreactive and it is therefore difficult, if not impossible, to disperse graphene nanoparticles as single nanosheets into polar solvents used typically used for polymerization and synthesis. Focus has shifted to graphene oxide (GO); the honeycomb structure of graphene with oxygen-containing functional groups on the surface. Incorporation of GO into polyimides is shown to improve mechanical properties, increase gas barrier properties and to increase water solvent resistance along with other solvents. Functionalization of GO sheets with monomer components of the chosen polymer results in further improvements of these properties. Here we demonstrate that tailoring of GO to be compatible with polyimide resins is a valuable technique in enhancing GO-polymer composite properties.

Available for download on Monday, May 07, 2018

Share

COinS