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Abstract: Introduced by Gale and Shapley in 1962, the deferred acceptance 

algorithm has been applied to an array of markets, including that of college admissions (a 
two-sided matching game assigning students to colleges). In the case where colleges’ 
preferences are completely determined by students’ test scores, this research proves that 
the Student Optimal Deferred Acceptance (SODA) algorithm never rewards a student for 
doing less well on an exam, i.e. satisfies “positive responsiveness.” The SODA algorithm 
is unique in that it yields an outcome that is stable, fair, and elicits positive 
responsiveness in the scenario of two students, two colleges, and two tests. Further, we 
compare this algorithm relative to other matching mechanisms, extracting key features 
that set SODA apart. There is no two-sided stable matching algorithm (one-to-one 
matching or many-to-one matching) that is strategy proof; however, when the preferences 
of the college are completely determined by the test scores of the students, regardless of 
the number of tests, we show that SODA not only satisfies positive responsiveness, but 
that it is also strategy proof in the case of any number of students, any number of 
colleges, and any number of tests. The implications of this are pertinent to the future of 
the college admissions process. 
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1- Introduction to Matching and Marriage 
1.1 A Brief Introduction to Matching and Current Applications 

 

The moment where a matching mechanism determines one’s fate is the moment when 

the gravity of game theory, mathematical economic modeling, and reality converge. Day 

to day, “matching” determines who gets what job in the labor market, who will receive a 

kidney transplant, which child is accepted into a particular charter school, and more 

theoretically, who marries whom. Matching mechanisms tackle the challenge of the 

efficient allocation of discrete units: men, women, students, schools, jobs, residencies, 

etc. Certain markets exist in which only one side of the equation has preferences, such as 

matching donor recipients to kidneys (i.e. kidneys do not have preferences): these games 

are referred to as one-sided matching mechanisms. Other markets exist in which both 

sides have preferences, such as when matching men and women to be married: such 

models are called two-sided matching games. This research focuses on two-sided 

matching.  

Tracing back to a paper written by David Gale and Lloyd E. Shapley in 1962 that 

compared the process of students applying to colleges to the a hypothetical situation in 

which men propose to women, matching has gained both popularity and prominence in 

modern markets. As mentioned above, these markets are vast and diverse. Matching 

algorithms have been applied to the school choice problem, the college admissions 

problem, kidney transplants, and entry-level medical residency programs; these 

mechanisms have also been applied to purely theoretical situations ranging from marriage 

(Gale & Shapley, 1962) to sorority rush (Mongell & Roth, 1991).  
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The original work of Gale and Shapley, College Admissions and the Stability of 

Marriage, concludes with the following statement: 

 
The reader who has followed us this far has doubtless noticed a trend in 

our discussion. In making special assumptions needed in order to analyze 

our problem mathematically, we necessarily moved further away from the 

original college admission question, and eventually in discussing the 

marriage problem, we abandoned reality altogether and entered the world 

of mathematical make believe. 

       (Gale & Shapley, 1962)  

This reflection has been transformed into a call to action. While the matching 

algorithm originally explored by Gale and Shapley was only applicable in the land of 

mathematical make-believe, matching has transcended “make-believe” into reality – into 

markets with significant implications for and effects on society’s welfare.   

However, even before Gale and Shapley published this paper opening the floodgates 

for academic literature on matching, residency programs matching medical students to 

hospitals were utilizing an algorithm called NIMP (now called NRMP), National Intern 

Matching Program (or presently, National Residency Matching Program). Used for the 

first time in 1951 and remaining much the same today, the algorithm is a voluntary 

process in which interns apply to a central clearing house, rating the hospitals in order of 

their preferences. The hospitals also rate the students in order of their preferences, 

subsequently submitting them. The central clearinghouse then takes these preferences 

into account to create a match – or a resident to hospital pairing. Each resident can only 

be paired to one hospital, and each hospital can be paired with a number of students not 

exceeding the hospital’s capacity. Despite the fact that this is a voluntary process, the 

majority of potential residents seeking hospitals decide to apply. Within the first few 
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years of its implementation, there was a participation rate of over 95% in the procedure 

(Roth and Sotomayor, 1990). While this rate has since dropped a few percentage points, 

the sweeping participation not only demonstrates the widespread effect that matching 

algorithms have had on society, but also exemplifies that potential participants are willing 

to put their futures in the hands of a central clearing house. This systematic approach 

must, however, respond to the demands of the demographic it serves. In recent years, 

NRMP has been modified to account for married couples and has instituted more 

elaborate tie-breaking measures (Couples in the Match, 2015).  

NRMP does not stand alone in its practical use. School Choice is another prominent 

example of the application of matching mechanisms. School choice emerged out of 

America’s racial historical context and organization of public schools. The neighborhood 

in which a student lives largely determines where that student will attend public school. 

The quality of that public school, however, is also largely dependent upon the 

neighborhood in which it is located. Thus emerges the problem of systematic socio-

economic segregation in the public school system and the correlated issue of de facto 

racial segregation. Public education faces the challenge of the opportunity gap: the 

disparity in the resources allotted and achievement of different demographic groups. The 

Great Schools Partnership defines the opportunity gap as “the ways in which race, 

ethnicity, socioeconomic status, English proficiency, community wealth, familial 

situations, or other factors contribute to or perpetuate lower educational aspirations, 

achievement, and attainment for certain groups of students” (Opportunity Gap, 2013). 

The opportunity gap often refers to inputs: “the unequal or inequitable distribution of 

resources and opportunities” (Opportunity Gap, 2014). One way to counteract the 
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detrimental effects of disparities in resource endowments is to cross boundary lines, and 

parents noticed. In the storm of education challenges, parents demanded a greater voice 

in choosing where their child attends public school. School choice is one result among 

numerous political prescriptions attempting to solve educational inequality. 

In the Boston and New York Public School systems, much like other school choice 

programs around the country, the original system for assigning students to schools via the 

school choice program schools was highly inefficient, often manipulated by students and 

parents (unsuccessfully), and failed to fulfill the objective of equal education opportunity 

(Ehlers & Klaus, 2012). As a result, in 2003, the New York City Department of 

Education contacted Alvin Roth, Harvard professor and economic specialist in matching 

games, requesting that he design a mechanism similar to NIMP to better the student 

assignment process of school choice. Mirroring this, Atila Abdulkadiroglu, a professor 

then at Columbia University and now at Duke, and Tayfun Sönmez, a professor at 

Harvard University at the time and now at Boston College, wrote an article published in 

the Boston Globe that explored the shortcomings of Boston’s student assignment 

mechanism. This article initiated the partnership between the school system and the two 

professors, as the Boston public school system ultimately consulted Abdulkadiroglu and 

Sömnez to design a new matching mechanism for the school choice program. 

(Abdulkadiroglu, 2013).  

School choice matching mechanisms are under constant evaluation in the search for 

improvement and adaptation. Abdulkadiroglu, Pathack, Roth, and Sömnez (2006) and 

Pathak and Sömnez (2008) demonstrated that the improved Boston mechanism, designed 

by Abdulkadiroglu and Sömnez, was subject to manipulation by parents, and it often 
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benefited “sophisticated agents” (Ehlers & Klaus, 2012). In practice, the mechanism may 

favor a certain student demographic over another because “naively truth-telling students 

(or parents) tend to be the worst off students under the Boston mechanism, which is not 

strategy proof” (a concept that will be discussed in depth at the end of Chapter 1) (Ehlers 

& Klaus, 2012). With the gravity of student futures resting in the hands of an algorithm, 

school choice continues to be a controversial topic.  

Similar to the school choice problem, the college admissions problem is an abstract 

representation of a real world decision. College admissions are a two-sided matching 

game that takes into consideration preferences of both the students and the colleges. 

Preferences, as the name suggests, are the order in which each ranks his/her/the 

institution’s possible matches—specifically, the students that the school wishes to enroll 

and the schools that the student wishes to attend. In the modern college admissions 

process, schools prefer some students to others because of residency, GPA, standardize 

test scores, starting a non-profit at age eight, or other admirable characteristics deemed 

necessary for a dynamic incoming class. For the purposes of this research, however, we 

assume that the preferences of the schools are completely determined by the test scores of 

the students. Students, on the other hand, prefer some schools to others because of 

specialty, prestige, location, legacy, cost, social opportunities, and/or the host of other 

attractive college features. This research takes into account the flexibility of those student 

preferences by using students’ stated preferences – rather than arbitrary ranking of 

colleges, for instance. Similar to the National Residency Matching Program, students can 

be paired with only one college, and colleges can be paired with many students. Thus, the 

college admissions problem is a many-to-one, two-sided matching game. Before delving 
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into the specifics of this problem, it will be useful to introduce the basics of the 

mathematical approach to matching using Gale and Shapley’s theoretical framework via 

the marriage problem. 

 
1.2 Exploring The Marriage Problem 

1.2.1 Meet your Match – An Introduction to Marriage 

Imagine 20 women and 20 men in small, isolated village. (Apologies for the hetero-

normativity of this example.) Each man needs to find a suitable wife, and each individual 

has to be happy enough such that he or she is not going to leave his or her partner for 

another. Is there a way to match each man to a woman so that the arrangements are 

stable? In other words, is there an algorithm that could be used to “successfully” match 

men and women in this thought experiment?  Referred to as the marriage problem, this is 

an example of a one-to-one, two-sided matching market, explored originally in a paper by 

Gale and Shapley (1962). Two sets of agents are at play: men and women. Each man and 

each woman have preferences over the potential partners, and each person can ultimately 

be matched with only one partner of the opposite gender or remain unmatched if they 

prefer. 

The theorems introduced in the original paper have opened the door to the concept’s 

application in a range of markets and theoretical applications. As Roth and Sotomayor 

state, it is “helpful to remember that much of our interest in this problem is motivated by 

labor markets, rather than by marriage in its full human complexity” (Roth & Sotomayor, 

1999). In this case, the examination of marriage, devoid of its “full human complexity”, 

is motivated by the desire to investigate the college admissions problem.  
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We will introduce the basics of a matching, the properties of stability and optimality, 

and the deferred acceptance algorithm under the conceptual framework of the marriage 

model before exploring specific applications of these concepts through the use of the case 

of two students, two colleges, and two test scores in Chapter 2 focusing on two 

algorithms: Student Optimal Deferred Acceptance (SODA) and College Optimal 

Deferred Acceptance (CODA). In addition, we will summarize select theorems 

fundamental to the positive responsiveness proof presented in Chapter 3. Chapter 4 

serves as a comparative study of other existing algorithms, delving into why certain 

properties are desirable, the limitations to certain assumptions, and ultimately how other 

existing and hypothetical algorithms violate one or more of the desirable properties that 

SODA satisfies.  

1.2.2 The Nitty Gritty of the Marriage Problem 

 Gale and Shapley (1962) define the marriage problem as consisting of two finite and 

disjoint sets of men and women, M={m1, m2, m3, …. , mn} and W={w1, w2, w3, …. , wn}, 

respectively. Just as on our isolated island, each man has preferences over the women, 

and each woman has preferences over the men. Certain assumptions need to be made 

about individual preferences. First preferences are strict: a woman is never indifferent 

between two alternative men, and a man is never indifferent between two alternative 

women. (This assumption can be relaxed, but it is maintained throughout this thesis for 

expositional purposes.) There will always exist a distinguishing feature that a female 

prefers about one man to another, and vice versa. Each man (or woman) thus has a 

distinct rank in the woman’s (or man’s) preference profile. This assumption is fairly 

realistic considering that preferences are a “knife-edge” phenomenon, where the slightest 
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disparity in desirable characteristics may determine an individual’s distinct rank (Roth & 

Sotomayor, 1999). In addition, preferences are transitive. For example, if a woman 

prefers m1 to m2 and m2 to m3, then she must prefer m1 to m3. In other words, the lower 

down a man is ranked on a woman’s preference profile, the less preferable he is, and if he 

is ranked third, then the woman cannot prefer him to the man ranked first. Again, this 

applies to both men and women. Finally, preferences are complete. Upon having to make 

the decision between two men, the woman is always able to determine whom she prefers; 

she is never unable to make a choice. In other words, given two alternatives, excluding 

the situation in which in which the woman prefers to remain unmatched, she is able to 

rank any given man (and vice versa for the preferences of men). These lead to the 

assumption that preferences are rational, in the sense that they are “acyclic” (Roth & 

Sotomayor, 1999). Strength of preferences is not taken into account –for the purposes of 

this research we simply account for the order in which each agent lists preferences.  In 

addition, each agent only cares about his or her own matching; individual utility is 

detached from the outcome of other players in the game. What I will call comparative 

wellbeing is not a factor in individual preferences.  

A matching α, or the outcome of the game, consists of the pairs of men and women, 

such that α = {(m1,w1), (m2,w2), …}, and each pair is a match. In other words, a matching 

is the group of bilateral pairings, or matches, between a man and a woman. Each man can 

be paired to only one woman, and each woman can only be paired to one man. However, 

a man or woman can decide that he or she would rather remain unmatched, or single. If a 

woman would prefer to remain single than to be matched with a particular man (…ouch) 

then that man is unacceptable to that particular woman. Conversely, a man is acceptable 
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to a woman if she prefers being with him than to being unmatched. The same is true for 

the preferences of men over women. (Campbell, 2006)  

If there exists a man and woman who mutually prefer each other to the woman and 

man, respectively, with whom they are currently matched, then the pair can upset the 

matching by blocking. If no pair wants to block, then that matching is stable. In other 

words, a stable matching is one in which there exists no woman/man pair that mutually 

prefer each other to his or her current match. More formally, there is no match such that 

wa would rather be paired with ma than mb with whom she is currently matched, and ma 

would rather be paired with wa than wb, his current match. In this example, ma and wa 

would block, and the matching would not be stable. Given stability is a desirable 

property, it is important to prove that stable matches are guaranteed for any group of men 

and women. In order for a mechanism to satisfy stability, the outcome must be stable for 

any specification of agent preferences. (Campbell, 2006)  

 
Theorem 1: (Gale and Shapley) There always exists a stable set of marriages. 

 
In order to prove Theorem 1 for any marriage market, Gale and Shapley put forth a 

procedure that always elicits a stable matching. The rules of this matching algorithm, 

coined the deferred acceptance algorithm, are as follows: 

Each woman in the set W proposes to her most preferred man from the set M, the 

man who ranks first in her preference ordering (for this example, we will be in a 

progressive society in which women propose to men.) Each man subsequently rejects or 

accepts the proposal.  If a man receives more than one proposal, he accepts the proposal 

from the most preferred woman according to his preference ordering. If a man finds his 

only proposer unacceptable, he can decide to remain unmatched for the first round. The 
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pairs that remain at the end of stage one are “engaged”. In other words, each woman 

whose proposal was not denied during the first round is provisionally matched with her 

most preferred man. (Please note that I will be using the terms “stage” and “round” 

interchangeably.) 

The women who were rejected in the first round then propose to the man second on 

their preference orderings, the man next preferred to the one whom they proposed to in 

round 1. Each man, once again, accepts the proposal from the woman he most prefers 

(choosing from a group consisting of new proposers and the woman with whom he is 

provisionally matched), and he is then provisionally matched with her for this round. A 

man remains unmatched if he has rejected all proposals in round 1 and round 2.  

The algorithm follows in this fashion, with women proposing to their next choice in 

the subsequent round if they are rejected or remaining provisionally matched if they are 

the most preferred of the group of proposers. In every round, each man rejects the 

proposals of unacceptable women and rejects all proposals other than that of his most 

preferred woman of the set of proposers and his provisional match from the previous 

round. A male and female pair are engaged if they are provisionally matched at the end of 

a round. A man remains unmatched if he has rejected all proposals in all previous rounds.  

The algorithm terminates when no woman is rejected. At this point each woman is in 

one of two situations: matched with a man (she is engaged) or rejected by all men that 

she finds acceptable (she is single). Each man has accepted a proposal in some round of 

the algorithm (he is engaged) or has rejected all proposals (he is single) or has received 

no proposals. The engagements, or provisional matches, are then consummated—

resulting in a stable set of marriages. 
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Figure 1 is a visual representation of how the deferred acceptance algorithm proceeds 

in practice. At the start of the procedure, the woman proposes to her most preferred man. 

She then faces two possibilities: being accepted or rejected. If she is rejected, she 

proposes to her next preferred man. If she is accepted, she either remains accepted in all 

additional rounds (denoted by the horizontal arrow pointing to the left) or is rejected in 

some subsequent round. This rejection is represented by the right-facing, horizontal 

arrow leading to the node in the second layer of the tree. From here the woman faces the 

same options of acceptance or rejection, then continued acceptance or rejection in some 

subsequent stage of the algorithm. Once again, if she is rejected at a later stage of the 

algorithm, she follows the horizontal arrow pointing to her next action: proposing to the 

man next on her preference list.   

A striking phenomenon results from this structure: the algorithm favors the proposing 

agents over the recipients of proposals (Gale and Shapley, 1962). If women are 

proposing, then no woman strictly prefers any other stable matching to the one that 

results from the algorithm. If men are proposing, then no man strictly prefers any other 

stable match. This is the concept of optimality (School Choice, 2014).  

 
Definition (Roth and Sotomayor): For any given marriage market, a stable matching is 

male optimal if every man likes it at least as well as any other matching. A stable 

matching is female optimal, if every female likes it at least as well as any other matching.  

 
Depending on the set of women and men and their preferences, a number of stable 

matchings are possible. If women and men have strict preferences, then each member of 

the group that proposes is matched with his or her “most preferred achievable” partner, 
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where an agent of the opposite type is achievable if he or she is a partner in some stable 

outcome (Roth & Sotomayor, 1999). This leads to the understanding that there can only 

be one optimal matching for each side; only one male-optimal stable matching and only 

one female-optimal stable matching exist.  

 
Theorem 2 (Gale and Shapley): When all men and women have strict preferences, there 

always exists an M-optimal stable matching, and a W-optimal stable matching. The W-

optimal stable matching is the matching αw produced by the algorithm when the women 

propose. The M-optimal stable matching is the matching αM produced by the algorithm 

when the men propose. (Roth and Sotomayor, 1999) 

 
It is convenient to conceptualize optimality as stable matchings on opposite ends 

of the “favorable” spectrum. Women, as a group, enjoy the set of stable matches 

produced by the algorithm when they propose, and vice versa for men. In addition, the 

stable matching that women most prefer just so happens to be the stable matching that the 

men least prefer. Roth and Sotomayor provide a corollary to this theorem, originally 

proposed by Knuth, proving that “when all agents have strict preferences, the M-optimal 

stable matching is the worst stable matching for the women; that is, it matches each 

woman with her least preferred achievable mate. Similarly, the W-optimal stable 

matching matches each man with his least preferred achievable mate” (Roth & 

Sotomayor, 1999).  Conceptually, if stable matchings were represented by utility 

functions, there would be an inverse relationship between the utility of men and women 

according to what faction proposed. The deferred acceptance algorithm acts as a short cut 
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to find the stable matching that is liked at least as much as any other stable matching by 

the proposing set of agents. (School Choice, 2014). 

 The above assertion results in an incentive for the recipient to manipulate the 

game in order to obtain a more favorable matching. That is, the deferred acceptance 

algorithm guarantees a stable matching when both parties act according to their true 

preferences, but it is not strategy proof. This captured by Roth’s (1985) impossibility 

theorem: 

 
Theorem (Roth): “No stable matching mechanism exists for which stating the true 

preferences is a dominant strategy for every agent” (Roth and Sotomayor, 1999).   

 
If men and women were to submit their preferences to a match-maker, the 

proposers would have no incentive to manipulate the system because the deferred 

acceptance algorithm guarantees that each member of this group gets their most preferred 

achievable partner. However, if the women were proposing, a man may benefit (by 

getting a more preferable matching) by deviating from his true preferences. An algorithm 

is strategy proof if neither party has an incentive to deviate from their true preferences, or 

more formally, “a matching mechanism will be called strategy proof if it is a dominant 

strategy for each player to state his or her true preferences in the strategic game it 

induces” (Roth & Sotomayor, 1999). In Chapter 3, this paper will present an existing 

theorem that no proposer can deviate from truthful revelation under the requirement of 

satisfying stability. This will be crucial to the proof that the student optimal deferred 

acceptance algorithm never rewards a student for doing worse on an exam. In order for a 
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game to be entirely “strategy proof,” however, neither the proposer nor the recipient can 

have the incentive (or, in certain cases, the capability) to misrepresent preferences.  

 
1.3 Where We Go From Here 

The theorems and assumptions about the deferred acceptance algorithm addressed 

in the marriage problem, a one-to-one matching game, are in many ways directly 

transferable to the college admission problem, a many-to-one matching game. In Chapter 

2, we will briefly disclose certain assumptions and theorems necessary to continue for the 

college admissions problem before delving into two approaches to deferred acceptance.  

SODA, student optimal deferred acceptance, and CODA, college optimal deferred 

acceptance, are the focus of Chapter 2. Using CODA, each college “proposes” to the 

institution’s most preferred student in the first round. If the college is “acceptable” to the 

student then the student accepts the proposal, and a match is provisionally made. If the 

student gets more than one proposal, then the student accepts the preferred college, and 

the college extends a proposal to its next preferred student in the next round. The 

algorithm terminates when each student is either matched with a college or has rejected 

all proposals. Correspondingly, using SODA, the students do the proposing. All students 

“propose” to their most preferred college at the beginning of round 1. A college can 

accept students up to its capacity and will accept those with the highest test scores 

(specific to that college’s test). If a student is denied from a college, she proposes to her 

next ranked school in the following round. In Chapter 2, we will use the special case in 

which there are two students, two schools, and two tests to introduce a basic example of 

how CODA can reward a student for doing worse on an exam. That observation was the 

motivation for the present honors thesis.    
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Chapter 2 – The 2x2x2 Case 
 

2.1  Defining the College Admissions Problem 

As stated in the introduction, the college admissions problem is a two-sided, 

many-to-one matching game that takes into account the preferences of both colleges and 

students. There are two finite and disjoint sets of students and colleges, S={s1, s2, … , sm) 

and C={c1, c2, … , cn), respectively. A matching π is the outcome of a game such that 

each college is matched with no greater than its capacity of qC students, and each student 

is matched with one college. A match is bilateral pairing of a student to a college. (If |qC| 

> 1, colleges will have multiple matches in the outcome, where students will have only 

one match.) Colleges have preferences over students, as students have preferences over 

colleges. Each college’s preferences are based solely on students’ test scores on the 

specific test used by that college, with the student who receives the highest test score 

ranking first, the student who receives the second highest test score ranking second, and 

so on, down to the student who receives the lowest acceptable test score ranking last. TC 

denotes a test used by a certain college C. 

 We need to impose certain assumptions about the preferences of each party. Just 

as in the marriage problem, the preferences of both colleges and students are strict, 

transitive, and complete (Roth & Sotomayor, 1999). A student is never indifferent 

between two alternative schools, and school is never indifferent between two students. 

(The indifference assumption can be relaxed, but we maintain it here to keep the analysis 

relatively simple.) Because test scores determine college preferences, a corresponding 

assumption is necessary: no two students receive exactly that same test score, thus 

allowing for distinct ranks in each college’s preference ordering. Students’ preference 
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orderings of colleges are determined on a subjective basis. In addition, if a student ranks 

college X first, college Y second, and college Z third, then it is not possible for the 

student to prefer college Z to college X. Similarly, if a college ranks student A first, B 

second, and C third, the college cannot prefer C to A. Complete preferences take on a 

slightly nuanced definition; among the colleges that the student finds acceptable, the 

student is always able to make a decision about which college she prefers given two 

alternative schools – there is no college left behind, or unevaluated in this situation. (This 

can also be relaxed to include the case of a student who would rather not attend college 

than be enrolled in college C.) Mirroring this, colleges are able to rank any given student 

who takes the entrance exam used by that college. The combination of the assumptions 

that preferences are strict, transitive, and complete comprises the assumption that 

preferences are rational (Roth & Sotomayor, 1999). Once again, we assume that 

comparative wellbeing holds no weight in determining the preferences of either the 

schools or students. In other words, the student only cares about his assignment – not his 

assignment relative to another student’s assignment, and a school only cares about its 

incoming class – not its incoming class in comparison to that of a competitive institution.  

In addition to the classic economic assumptions about each party’s preferences, 

we make certain implicit assumptions. For instance, do expressed student preferences in 

fact promote student welfare? Creating an informed personal preference ordering requires 

accurate self-evaluation. Depending on the perceived vs. actual skill-set of a student, 

what if the student would be more successful if he were assigned a school other than his 

top choice (or other than a college which he finds acceptable)? We ignore this possibility; 

we assume that satisfying the expressed preferences of students promotes student welfare.  
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Unlike the marriage problem, colleges have an incoming class, not an incoming 

student. The many-to-one aspect of the college admissions problem raises an important 

question as to whether preferences over individual students (which are equivalent to 

preferences over test scores) translate to preferences over a desirable incoming class (a 

conglomerate of students) (Roth & Sotomayor, 1999). For the purposes of this paper, we 

use colleges’ preferences over individuals as representative of their preferences over 

groups of individuals. Specifically, we assume the replacement property. If the set Gʹ′ of 

students can be obtained from G by removing some student g from G and replacing her 

with gʹ′, then a college will prefer Gʹ′ to G if and only if it prefers gʹ′ to g. (Note that a 

student’s preferences are complete if for any two acceptable colleges C and D, either C is 

preferred to D or D is preferred to C. The same is true for college preferences. Further, a 

college’s preferences over groups of students need not be complete, even if it has 

complete preferences over individuals.) (Roth & Sotomayor, 1999).  

 A student is acceptable to the college if the college prefers that student to leaving 

an empty seat. A college is acceptable to a student if that student prefers the college to 

remaining unmatched. If an agent of the opposite type is unacceptable, then a student 

does not include that college on her preference ordering, and a college does not include 

that student on its preference ordering (Campbell, 2006). From the perspective of a 

college, a test threshold determines whether or not a student is acceptable. An acceptable 

student must receive a test score of at least the test threshold of TC(0) for a given college 

C. Throughout this paper, we assume that the threshold is a test score of 0 for all 

colleges; if the student takes the test used by a certain college, he or she is automatically 
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deemed acceptable. In other words, if a student can write her name on the test, she is 

good to go (setting an impressively high standard).  

  Given a certain outcome, if there exists a student-college pair that mutually 

prefers each other to their current matches, they can upset the outcome by blocking 

(Campbell, 2006). If no such pair exists, the outcome is stable.  

Definition: An outcome is stable if there is no match such that some student A would 

rather be paired with college X than college Y, with which she is currently matched, and 

college X would rather be paired with student A than some student B, who is currently 

assigned to X; A and X would block. If there is not such blocking pair, regardless of the 

specification of student and college preferences, then we say the mechanism is stable. 

 Dealing with the case of a single student-college pair, the above definition of 

stability is specifically “pair-wise” stability; however, a coalition of students and colleges 

may be able to benefit by acting outside of the mechanism. If no coalition is able to 

benefit by blocking, the outcome of a particular algorithm is considered group stable. For 

the purposes of this research, however, we focus on pair-wise stability because satisfying 

group stability is contingent upon satisfying pair-wise stability (Roth and Sotomayor, 

1999).  

Gale and Shapley, the first to draw an economic comparison between marriage 

and college admissions, expanded the deferred acceptance algorithm from the marriage 

model to the college admissions problem. Not only proving that the deferred acceptance 

algorithm always yields a stable outcome, but also proving that deferred acceptance 

yields “an optimal assignment of applicants,” we refer to this as student optimal deferred 

acceptance or SODA (Gale & Shapley, 1962).  
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Theorem (Gale and Shapley): “Every applicant is at least as well off under the 

assignment given by the deferred acceptance procedure as he would be under any other 

stable assignment.” (Gale & Shapley, 1962).  

 Given a set of students and colleges, a number of stable outcomes may exist. 

Similar to the marriage problem, the deferred acceptance algorithm acts as a short cut to 

find either the student optimal or the college optimal stable matching, depending upon 

who “proposes.” If a number of stable matchings exist, they exist on a continuum 

favoring either colleges or students. The student optimal and college optimal matchings 

exist on opposite ends of this continuum, where the best matching for students is 

systematically the worst matching for colleges (School Choice, 2014). From this we can 

deduce that if the college optimal and student optimal stable outcomes are the same, there 

must be only one stable matching.  

Definition: An outcome π is considered student optimal if there is no other stable 

matching that some student prefers to π. Similarly, an outcome π* is college optimal if 

there exists no other stable matching that some college prefers to π*. (Campbell, 2006) 

 In section 2, we map the path of a student on the way to college acceptance 

(Figure 2.1) mirroring the path of a woman on the way marriage (Figure 1). Section 3 

follows this explanation with a simple example of both CODA and SODA with certain 

desirable properties such as fairness and responsiveness embedded within the example. 

Section 4 provides a proof that in the 2x2 case, any mechanism that yields an outcome 

that is both responsive and fair must be equivalent to SODA. 
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2.2  SODA and CODA in Action 

SODA proceeds as follows. In round 1, each student in the set S proposes to his or 

her most preferred school from the set C. Each school accepts the proposals of the 

students with the highest test scores up to its capacity of qC students. If the school accepts 

the proposal, then the school and the student are provisionally matched. If the school 

rejects the proposal (because it has reached its capacity and the proposing student has a 

lower test score than all other students that have been provisionally accepted by that 

college or because the college finds the student unacceptable), the student then proposes 

to her second preferred school in the following round. Once again, the school either 

accepts her proposal (if she has one of the qC highest test scores of the group of proposing 

students comprised of the school’s previous round of provisionally matched students and 

new applicants) or rejects the proposal because she does not have one of the qC highest 

test scores. A given college can have empty seats if it receives fewer proposals than its 

capacity in rounds 1 and 2 or if it receives fewer than its capacity of acceptable proposals 

in rounds 1 and 2. (We assume that all students who apply are acceptable because they 

have a test scores greater than the test threshold of 0.)  

The algorithm proceeds in this fashion, with students proposing to their next 

choice in the subsequent round if they are rejected or remaining provisionally matched if 

they are among the students with the qC highest tests scores of group of proposers. In 

every round, schools reject the applications of unacceptable students and reject all 

proposals of students beyond those with the qC highest test scores on the exams specific 

to each college. A student whose proposal has been accepted and the school that accepted 

are provisionally matched at the end of a round.  
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The algorithm terminates when no student is rejected. A student will either be 

provisionally matched with a college at this point or has been rejected by all colleges that 

she finds acceptable. The provisional matches become final student-to-college 

assignments. Figure 2.1 follows the path of a student through an application of SODA to 

the college admissions problem.  

CODA is the converse; colleges offer admission. In the first round, each college 

proposes to its most preferred students up its capacity. Each student accepts or rejects the 

schools’ proposals. If a student receives more than one proposal, she chooses her most 

preferred school and rejects all other proposals. If a student finds her proposer(s) 

unacceptable, she can remain unmatched for the first round. A student who accepted a 

proposal and the college that proposed are provisionally matched at the end of round 1. 

After the first round, if a college has open seats, it offers admission to the next highest 

ranked students up to its capacity. A student once again accepts the proposal of its most  

preferred school and rejects all others. And so on. The algorithm terminates when no 

college is either rejected or has exhausted its list of acceptable students.  

 
2.3  A 2x2 Example 

In the following example, there are two students and two colleges: S={A,B} and 

C={X,Y}. Each college has a capacity of one student, |qX| = 1 and |qY| = 1. College X 

admits students based on their quantitative test score, while college Y uses the verbal 

score. Student A prefers college Y to X, and student B prefers X to Y. The table below 

lists the test scores of A and B on TX and TY (note that TX and TY can be different 

components (e.g. math and verbal) of the same test weighted differently into the 

admissions decisions of various colleges):  
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Figure 2.2: Scenario 1 

Student Quantitative Score (TX) Verbal Score (TY) 
A 80 60 
B 70 90 

 

Given the test scores and preferences of the students, the following preference orderings 

emerge: 

 

 

Applying CODA, in round 1, college X offers admission to A, and college Y 

offers admission to B. Both students accept the proposals because each finds both schools 

acceptable, resulting in provisional matches (A,X) and (B,Y). The algorithm terminates 

as no student rejects any college’s proposal. The matches (A,X) and (B,Y) are finalized: 

πCODA = { (A,X) , (B,Y) }.  

 Applying SODA, in round 1, student A proposes to Y, and student B proposes to 

X. Both colleges accept the proposals resulting in the provisional matches (A,Y) and 

(B,X). The algorithm terminates as no college rejects any proposal: πSODA = { (A,Y) , 

(B,X) }. Note that both students prefer πSODA to πCODA, and both colleges prefer πCODA to 

πSODA. 

 Figure 2.3 lists the test scores of A and B on TX and TY where the only difference 

is that student B receives a lower verbal score.    

Figure 2.3: Scenario 2 

Student Quantitative Score (TX) Verbal Score (TY) 
A 80 60 
B 70 50* 
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The change in B’s verbal score is drastic enough such that both colleges now prefer 

student A to student B. The preferences of the students and colleges are as follows: 

 

 

 

Applying CODA first, colleges X and Y propose to A in round 1. A accepts her 

most preferred college, Y, and rejects X. The provisional match (A,Y) is made. In round 

2, college X proposes to its next ranked student B who accepts the proposal, resulting in 

the provision match (B,X). The algorithm terminates as no college is rejected. The 

provisional matches are finalized, and with student A assigned to Y and student B 

assigned to X: π*CODA = { (A,Y) , (B,X) }.  

 Using SODA, the process is exactly the same as when student B receives a higher 

test score. Each student applies to her most preferred college who accept the proposals, 

and the algorithm terminates as π*SODA = { (A,Y) , (B,X) }.  

Scenario 2 presents an issue. By receiving a lower test score on TY, student B is 

rewarded by getting assigned to a more preferred college X. This violates responsiveness: 

 
 Definition: A mechanism that assigns students to colleges is responsive if it never 

assigns a student to a college that she prefers to the one that she would have 

been assigned if she had earned a higher score on any single exam, assuming no change 

in any student’s preferences and no change in any other test score. 

 
The following section proves that SODA always yields an outcome that is both 

responsive and fair. Some responsive mechanisms exist where there is never a case in 

	
  	
  	
  A	
  	
  	
  	
  	
  	
  B	
  
	
  	
  	
  Y	
  	
  	
  	
  	
  	
  X	
  
	
  	
  	
  X	
  	
  	
  	
  	
  	
  Y	
  

	
  	
  	
  X	
  	
  	
  	
  	
  Y	
  
	
  	
  	
  A	
  	
  	
  	
  	
  A	
  
	
  	
  	
  B	
  	
  	
  	
  	
  B	
  



	
   27	
  

which a student can get assigned a more preferred college if she gets a higher test score 

(such as the mechanism that ignores test scores entirely). SODA, however, sometimes 

assigns a student to a better college when she gets a high score: this is the distinction 

between responsiveness and positive responsiveness.   

 
2. 4  SODA: Responsive and Fair for the 2x2 Case 
 
 
Definition: When test scores generate college preferences, an assignment is fair if we 

cannot find a student S and a college C such that S prefers C to the college assigned to S, 

and S has a higher score on the test used by C than some student assigned to C.  

 
Note that if we treat each college’s ranking of students by the students’ test scores 

on the test used by that college as preferences, then fairness and stability are identical: an 

outcome is stable if there exists no student-school pair that prefer each other to their 

respective current matches. Formally, no student-school pair exists such that student B 

prefers college X to her current school assignment, and college X prefers student B to a 

student who is currently assigned to X. Student B and college X would block, upsetting 

the algorithm, thus violating stability. Stability and fairness are interchangeable when test 

scores completely determine college preferences.   

Gale and Shapley (1962) prove that the deferred acceptance algorithm always 

results in a stable outcome. Because fairness and stability are interchangeable when 

student test scores determine college preferences, this theorem can be expanded to 

include fairness. The deferred acceptance algorithm, thus, always yields a fair outcome.  
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Definition: Two mechanisms are considered equivalent if they always deliver the same 

outcome for any given pattern of individual test scores and college preferences.   

 
The following proves that in the case where there are two students, two colleges, 

and two tests, a mechanism that yields a stable, fair, and responsive outcome is 

equivalent to SODA. This proof sets the conceptual stage for the generalizable proof in 

Chapter 3 that addresses SODA’s responsiveness with any number of students, colleges, 

and tests.  

 
Lemma: In the 2x2 case, there is only one fair matching if and only if there is a student-

college pair such that each ranks the other first.  

Proof: 

(i) Suppose that student A ranks Y first, and college Y ranks A first because A 

earned a higher TY score than B. Then if A is not assigned to Y the outcome is 

not fair. That leaves only one possible assignment: (A,Y), (B,X). This is fair 

because, even if B prefers Y to X, she cannot claim to have a higher TY score 

than A.  

(ii) Suppose there is no student-college pair such that each ranks the other first. 

Suppose that A ranks Y first. Then Y ranks B first. Then B must rank X first.  

It follows that X ranks A first. The following pattern of preferences emerges: 

 
 
 
 

Note that both (A,X), (B,Y) and (A,Y), (B,X) are fair.	
  ☐	
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Theorem: For the 2x2 case, any mechanism that yields an outcome that is responsive 

and fair is equivalent to SODA.  

Proof:  

If there is only one fair outcome, then every fair mechanism delivers that 

outcome. Because SODA is fair (stable), then when there is only one fair assignment, all 

fair mechanisms yield an outcome equivalent to that of SODA.  

Suppose there is more than one fair assignment. In the 2X2 case, this means that 

there are exactly two fair assignments, (A,X), (B,Y) and (A,Y), (B,X). Then we cannot 

have both students preferring the same college, and we cannot have both colleges ranking 

the same student first. In other words, in order to have more than one fair assignment, no 

student-school pair can mutually prefer each other.  

Suppose without a loss of generality, A ranks Y first and B ranks X first. If X 

ranks B first and Y ranks A first, then there is only one fair assignment: (A,Y), (B,X). 

Therefore, as the lemma above proves, if there are two fair assignments, then we must 

have this pattern: 

 
 
 
If the mechanism yields (A,Y), (B,X), then it agrees with SODA. Suppose that a fair 

mechanism yields (A,X), (B,Y) in this case. 

Now, suppose B had earned a lower score on TY such that B’s position in Y’s 

ranking changes. The colleges’ new preference orderings are: 
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If the mechanism is responsive it cannot reward B for getting a lower score, and hence 

the assignment remains (A,X), (B,Y). We have: 

  
 
 
 
 
But this is not fair: A prefers Y to X and gets a better Y-score than B. Therefore, in the 

2X2 case a fair and responsive mechanism is always equivalent to SODA.	
  ☐ 

It is important to note that the above is an “equivalence” theorem. We are not 

claiming that SODA is the only algorithm that yields a stable, fair, and responsive 

outcome; we instead argue that if another mechanism yields a stable, fair, and responsive 

outcome, it will be equivalent to the outcome of SODA. Dubins and Freedman (1981) in 

fact provided an alternative algorithm characterized by the same properties.  The 

following chapter delves into a generalized proof that SODA is responsive for any 

number of students, colleges, and tests.  
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3 – SODA is Responsive 
 

When the preferences of colleges are completely determined by the test scores of 

the students, regardless of the number of tests, we prove that SODA does not incentivize 

students to perform below capacity and does not reward students for doing less well on 

an exam. We further propose that SODA is strategy proof in that students cannot benefit 

by misrepresenting their preferences nor by under-performing on a test in the case of any 

number of students, any number of colleges, and any number of tests. This chapter 

explores the above assertions. Sections 3.2 and 3.3 contain the proofs leading to the 

conclusion that SODA does not reward a student for doing less well on an exam while 

section 3.4 explores the possibility of strategy proofness. 

Why should we care? As we will explore in chapter 4, responsiveness 

encompasses aspects of both allocative efficiency and fairness, and its presence helps to 

create a desirable incentive structure. Responsiveness ensures that “better” students go to 

“better” schools while stripping away the possibility for a more preferred assignment as a 

result of getting a lower test score. Students, thus, have an incentive to perform to the 

best of their capability on every test.  

 
3.1 Setting the Stage  

 
Definition: A mechanism that assigns students to colleges is responsive if it never 

assigns a student to a college that she prefers to the one that she would have 

been assigned if she had earned a higher score on any single exam, assuming no change 

in any student’s preferences and no change in any other test score. 
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There are n students and m colleges. The preferences of the college are 

completely determined by the test scores of the students—with the student who receives 

the highest test score on the exam used by that college ranking first, the student who 

receives the second highest test score ranking second, down to the student with the lowest 

test score for that college. Let TC denote the test used by college C, which has room for 

qC students.  Let α denote a particular application of the SODA algorithm.  Then α(1) is 

the state of SODA in round 1, α(2) is the state of SODA in round 2, and so on. Every 

college C individually defines TC(0), where TC(0) is the lowest test score the college is 

willing to admit – the threshold – below which the college C prefers to remain 

unmatched. If the college C prefers to remain unmatched to accepting the student, the 

student is unacceptable to college C. (All students in each round must have test scores 

greater than TC(0) in order to be admitted.) If there are less than qC test scores among the 

students who applied to C in round 1 that exceed the threshold, TC(0) then carries over to 

the next round. This pattern continues as TC(0) trumps each subsequent test threshold if 

the college is not yet at full capacity. This may happen as a result of the following two 

scenarios: less than qC students apply to college C for every round, or less than qC 

students who apply have test scores greater than the initial threshold of TC(0). Assume 

TC(0) = 0 for every college C, and assume all students receive a score greater than zero. 

Let PC(1) denote the set of students who apply to college C in the first round. 

(Then PC(1) is the set of students who rank college C first.) Let AC(1) denote the set of 

students provisionally accepted at the end of round 1. Set AC(1) = PC(1) if PC(1) has no 

more than qC members; otherwise AC(1) is the set of students in PC(1) with the qC highest 

scores on TC. Then RC(1) = PC(1)\AC(1), the students who are rejected by college C at the 
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end of round 1. Let TC(1) denote the lowest test score provisionally accepted in round 1. 

(If there are greater than qC applicants, TC(1) acts as the functional threshold for 

provisional acceptance in the next round.) It follows that α(1) specifies PC(1), AC(1), 

RC(1), and TC(1) for each college C. Once a college reaches its full capacity of qC 

students in any round, that college remains at full capacity until the algorithm terminates 

because there are at least qC students who applied with test scores that exceed the 

threshold. (If at any stage t |PC| ≥ qC, college C will accept, or be matched with, its 

capacity of qC students.)  

Given α(1), let PC(2) be the union of AC(1) and RC-1(1), where RC-1(1) is the set of 

students who were rejected in round 1 from the college ranked directly above college C 

on their preference profiles. PC(2) is the set of students who were either provisionally 

accepted at the end of round 1 or who applied to C at the beginning of round 2.  Set AC(2) 

= PC(2) if PC(2) has no more than qC members; otherwise AC(2) is the set of students in 

PC(2) with the qC highest scores on TC. (AC(2) is the set of students who are accepted by 

college C at the end of round 2.) In order for a student in set RC-1(1) to gain provisional 

acceptance into college C, she must have a test score that at least exceeds TC(1) and that 

is ultimately equal to or greater than TC(2). (The lowest test score provisionally accepted 

in round 2 is TC(2).)  Set RC(2) = PC(2)\AC(2), the students who are rejected by college C 

at the end of round 2. Then α(2) specifies PC(2), AC(2), RC(2), and TC(2) for each college 

C. 

 Given PC(t), AC(t), RC(t), and TC(t) we define PC(t+1), AC(t+1), RC(t+1), and 

TC(t+1) as follows:  PC(t+1) is the union of AC(t) and RC-1(t), where RC-1(t) is the set of 

students who were rejected from the college ranking just above college C in round t on 
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their preference lists. Set AC(t+1) = PC(t+1) if PC(t+1) has no more than qC members; 

otherwise AC(t+1) is the set of students in PC(t+1) with the qC highest scores on TC. In 

order for a student in RC-1(t) to gain provisional acceptance into college C she must have 

a test score that at least exceeds TC(t) and that is ultimately greater than or equal to 

TC(t+1). (TC(t+1) is the lowest test score provisionally accepted.) And RC(t+1) = 

PC(t+1)\AC(t+1).  Similarly, α(t+1) specifies PC(t+1), AC(t+1), RC(t+1), and TC(t+1) for 

each college C. 

Given the set of students, the preferences of the students, the test scores of the 

students (determining the preferences of the colleges), the set of colleges, and the 

capacity of each college, let αH be the application of SODA.  Let αL be the application of 

SODA in the identical situation except that student B has a lower score on TC for some 

college C. This includes the case C=X, where X is the college to which B is assigned by 

αL. We prove that if αH assigns B to college Y, and B prefers X to Y then αL cannot assign 

B to X. Contextually, student B cannot benefit from getting a lower test score. We begin 

by establishing this for the specific case in which X is B’s most-preferred college. In 

order to prove that SODA is responsive, however, we must first prove that truthful 

revelation is the dominant strategy for students. Section 3.2 explores this existing proof.   

 
3.2 The Dominant Strategy for Students 

 
Theorem 1: Truthful revelation is the dominant strategy for students using SODA. 

(Dubins & Freedman, 1981).  

No student will be assigned a preferred college (according to her true preferences) 

when she misrepresents her true preferences. The above theorem is deduced from the 
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marriage problem. Dubins and Freedman (1981) in conjunction with Roth (1985) found 

that “the mechanism that yields M-optimal stable matching (in terms of the stated 

preferences) makes it a dominant strategy for each man to state his true preferences” 

(Roth & Sotomayor, 1999). The same goes for a W-optimal stable outcome. As colleges 

cannot misrepresent preferences, we focus on students. Theorem 1 can be generalized: 

Any mechanism that always yields an S-optimal stable matching always elicits truthful 

revelation of student preferences. This is crucial for the proof that SODA is responsive.  

 
3.3 Proof that SODA is responsive 

 The above theorem is integral to the second step in the proof that SODA is 

responsive. However, we first explore the special case in which X is student B’s top 

ranked institution. With Theorem 1 and Step 1 as platforms, Step 2 proves that a student 

can never benefit by receiving a lower score on any test using the SODA algorithm.  

 
Theorem 2: SODA is responsive. 

Step 1:  If X is B’s most-preferred college and αL assigns B to college X then αH assigns 

B to X. 

Proof: If αL assigns B to college X, then X does not reject B in any round of αL.  In fact B 

belongs to AX(t) in every round t of αL because B will apply to her most-preferred college 

in round 1.  

The following is a proof by induction. Let Γ denote the set of colleges and Σ the 

set of students. Every student applies to her most-preferred college at the beginning of 

round 1 of both αH and αL.  Therefore, PC(1) is the same for αH(1) as for αL(1) for every 

college C in Γ.  Given that B is accepted into X in αL(1), B must be accepted into X in 
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αH(1) because the only difference in the scores between αL and αH is that B’s TX score is 

higher for αH, and the colleges preferences are completely determined by test scores. 

AX(1) is thus the same set for αH(1) as it is for αL(1). If AX(1) and PX(1) are identical 

between αH(1) and αL(1), it follows that RX(1) must be the same set in αH(1) as αL(1). If, 

and only if, student B’s test score was the lowest provisionally accepted by X for αL(1), 

the functional threshold for college X in round 1 is determined by this score. The 

functional threshold for college X would then be higher in αH(1) than αL(1) (Assuming 

student B at least surpasses the test score of the student ranked directly above her from αL 

to αH, the ranking of students in AX(1) will change while the set remains the same). If 

student B has a test score of anything other than TX(1) for αL, the functional threshold 

remains the same for both αH(1) than αL(1). Again, while student ranking in the X’s 

preference ordering changes assuming student B at least surpasses the test score of the 

student ranked directly above her from αL to αH, the set AX(1) remains the same.  For the 

sake of simplicity, assume student B’s test score is never the lowest provisionally 

accepted. (Student B never determines the functional threshold TX(t).) For every college 

C in Γ \{X} the ranking of the students in Σ\{B} determined by TC is the same for αH as 

for αL. Therefore, TC(1) is the same for αH as for αL for every college C in Γ \{X}, and 

AC(1) is the same set for αH(1) as it is for αL(1) for every college C in Γ \{X}.  If AC(1) 

and PC(1) are the same in αH(1) and αL(1) for every college C in Γ \{X}, it follows that 

RC(1) is the same in αH(1) and αL(1) for the same set of colleges. Therefore, we must 

have αH(1) = αL(1).  

Suppose that αH(τ) = αL(τ) for all τ ≤ t.  We show that αH(t+1) = αL(t+1):  For 

every college C, the sets PC(t), AC(t), and RC(t) and the threshold TC(t) are the same for 
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αH(t) as for αL(t).  By hypothesis, B belongs to AX(t) and to AX(t+1) for αL in the case 

where X is student B’s most preferred college.  Therefore, B belongs to AX(t) and to 

AX(t+1) for αH because B’s TX score is higher for αH (note the colleges’ preferences are 

completely determined by test scores), and for every college C in Γ \{X} the sets PC(t), 

AC(t), and RC(t) and the threshold TC(1) are the same for αH(t) as for αL(t).   It follows 

that for every college C the set PC(t+1) is the same for αH(t+1) as for αL(t+1).  And for 

every college C the ranking of the students in Σ\{B} according TC is the same for αH as 

for αL. Therefore, for every college C the set AC(t+1) is the same for αH(t+1) as for 

αL(t+1).  We must have αH(t+1) = αL(t+1).  

Further, suppose αL assigns B to X, and X ranks first in B’s preference ordering. 

Suppose that αH is an application of SODA for which everything is identical to αL except 

that B gets a higher test score on TY from some Y ≠ X. Then αH assigns B to X because B 

never applies to any school other than X and all the TX scores (including that of B) are 

the same for αH and αL.  ☐ 

Thus, in the case where student B is accepted by her most preferred college X for 

αL and αH in all rounds, she is neither rewarded nor punished for receiving a lower test 

score. The question emerges, however, as to what would happen if X were not B’s most-

preferred college. Could B’s higher score displace some student D, leading to a chain 

reaction that steers B to getting assigned a less preferable college than the college to 

which she is assigned with a lower test score? The following proof deals with the case in 

which X is not B’s most preferred college. It is best to approach the subsequent step in 

the proof with the following in mind:  
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(i) If B ranks college X in position τ or above in her preference ordering, and B is 

assigned to X when B receives the low score, then B will be assigned to X or 

better according to her own preferences when B receives a high score. This is 

a supposition.  

(ii) B can never benefit by misrepresenting her preferences (Theorem 1).  

 
Step 2:  If αH assigns B to a college, that college ranks at least as in B’s preference 

ordering as the college assigned to B by αL. 

Proof: 

Let X be the college to which B is assigned by αL. Let πB be the rank of X in p(B), 

which is B’s preference ordering of colleges. (πB=1 if X is most preferred by B, πB=2 if X 

is preferred to every college except the one that ranks first, and so on.) Note that πB  

specifically refers to college X’s position and no other college’s ranking.  

We know that if πB=1 then αH assigns B to a college that ranks at least as high as 

X in p(B). Suppose that we have established that if πB ≤ τ then αH assigns B to a college 

that ranks at least as high as X in p(B). We prove that if πB = τ+1 then αH assigns B to a 

college that ranks at least as high as X in p(B). In other words, if αL assigns B to college 

X, B cannot benefit by receiving a lower test score because with a higher score, B is 

assigned to a college she prefers at least as much as college X (assuming no change in 

any student’s preferences and no other changes in test scores).  
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Denote p(B) as follows:   p(B) 
      C1 
      C2 

                   αL 
      Cτ-1            BX 
      Cτ 
      X 

       
 
That is, C1 is B’s most-preferred college, C2 is B’s second-preferred college, down to Cτ, 

the college that is in the τth place for B, with X ranking next in the (τ+1)th position. The 

preferences of all students in Σ\{B} remain the same for αL and αH. Of course, αL à BX 

denotes the fact that αL assigns B to X.   

 Assuming that everything else, including B’s test scores, remain the same, we 

change B’s preferences by moving X up one rank without changing the relative ordering 

of any other college. Let the new preference ordering be denoted pʹ′(B). Note that X is 

now in the τth position in pʹ′(B). 

We have:    pʹ′(B) 
      C1 
      C2 

                    
      Cτ-1  
      X 
      Cτ 

                    
 
Let αʹ′L denote the application of SODA with p(B) replaced by pʹ′(B). (Two different 

combinations of test score and preferences arise: [p(B), αL], [pʹ′(B), αʹ′L].) Suppose αʹ′L 

assigns B to a college that ranks above X in p(B) (for instance, Cτ). Then B could 

manipulate αL by reporting pʹ′(B) instead of p(B). But this contradicts Theorem 1. For the 

previous supposition we view p(B) as the true preference of B; for following supposition 
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consider pʹ′(B) as B’s true preference ordering. Suppose that αʹ′L assigns B to a college 

(say Y) that ranks below X in p(B). (See possible preference ordering below.) Then Y 

must rank below X in pʹ′(B) which means that B can manipulate αʹ′L by reporting p(B), 

also a contradiction of Theorem 1. (This is still under the assumption that p(B) assigns B 

to college X). Therefore αʹ′L assigns B to X. 

 

 

 

 

 

 

Note that if B manipulates her preferences by placing a lower ranked school 

(according to her true preferences) above X it is possible that B will get into that less 

preferred college. It is only in the case that B manipulates her preferences by reporting a 

higher ranked school below X that the manipulation is inconsequential. In other words, 

viewing p(B) as B’s true preferences: if B reports X, the lower ranked school, above Cτ,  

B does not change the likelihood that she will get matched with Cτ; however, if B were to 

report that Y ranked above X, B may get into a less preferred college. This concept is 

embedded in Theorem 1.  

Now consider αH: Note that πB= τ for pʹ′(B). Therefore, by the induction 

hypothesis αʹ′H must assign B to college X or a college that ranks higher than X in pʹ′(B). 

(Of course α’H is the history of SODA with everything the same as αʹ′L except that B has a 

higher score in the test used by college X.) 

p(B) 
C1 
C2 

 
Cτ-1 
Cτ 
X 
Y 

 

pʹ′(B) 
C1 
C2 

 
Cτ-1 
X 
Cτ 
Y 
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Finally, suppose that αH assigns B to a college that ranks below X in p(B). Then B 

can manipulate at αH by reporting pʹ′(B) because a college that ranks at least as high as X 

in pʹ′(B) ranks at least as high as X in p(B). But this contradicts Theorem 1. (We have 

now explored four combinations of test scores and preferences: [p(B), αL], [pʹ′(B), αʹ′L], 

[p(B), αH], and [pʹ′(B), αʹ′H].) Thus, if B ranks college X ranks in position τ+1 in her 

preference ordering, and B is assigned to X when B receives the low score, then B will be 

assigned to X or better when B receives a high score. ☐  

 Note that the proof of Step 2 is valid whether the difference between αL and αH 

lies in B’s score on TX or on some other college’s test. (All of the detail concerning the 

effect on B’s assignment of different scores is embedded in the proof of Theorem 1.) 

 
3.4 A Proposition: Is SODA Strategy Proof? 

 Within the structure of “optimal” deferred acceptance algorithms, the “proposer” 

cannot benefit my misrepresenting his or her preferences, as proven in Theorem 1. In any 

simple many-to-one, two-sided matching problem, the recipient can manipulate his or her 

preferences to obtain a more preferable matching, as explored in Chapter 1. However, 

colleges do not have that luxury in the college admissions problem as we have defined it, 

as a central clearing house determines student rankings based on test scores used by each 

college. Because colleges’ preferences are completely determined by the test scores of 

the students, by definition schools cannot manipulate their preferences.  

This leaves students as the only potential agents to manipulate preferences. Figure 

3.4 demonstrates the potential strategies a student could employ to manipulate the 

outcome of a particular application of SODA. A student can either change the outcome of 

SODA by falsely reporting her preferences or by altering the preferences of the colleges 
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(by manipulating their test scores). Theorem 1 proves that students have no incentive to 

manipulate their college preferences (See Remedy 1 in figure 3.4); SODA is 

fundamentally strategy proof for students in the sense that truthful revelation of 

preferences is the dominant strategy. However, students can also change the outcome by 

“manipulating” the preferences of the colleges in one of two ways: (i) purposefully 

receiving a lower test score or (ii) purposefully receiving a higher test score. We can 

reject both possibilities. No student has an incentive to perform below capacity on an 

exam because SODA is responsive (never rewards a student for performing worse on an 

exam), thus negating the strategy of receiving a lower test score in order to obtain a more 

favorable assignment (Remedy 2). And (Remedy 3) by definition, a student cannot 

perform beyond his or her capacity on an exam, thus eliminating the possibility of 

receiving a higher test score to change the outcome.  

While this section does not comprise a formal proof, it provides an intuitive 

framework for the proposition that SODA is strategy proof when the test scores of the 

students completely determine the preferences of the college. Theorem 1 and Theorem 2 

are necessary, but not sufficient, for proving that SODA is strategy proof in the case of 

any number of students, any number of colleges, and any number of tests.  
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Figure 3.4: “Strategy Proofness” of SODA 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strategies Students Could Use to 
Manipulate Outcome of SODA: 

Student Preferences: 
	
  

College Preferences: 
	
  

Purposefully 
receive a lower 
test score on an 
exam 

Purposefully 
receive a 
higher test 
score on an 
exam 

Manipulate true preferences 
by reporting a college 
preference ordering that 
deviated from true preferences  

Remedy 1: Theorem 1 
Truthful revelation is 
always the dominant 
strategy for a proposer in 
SODA. 
	
  

Remedy 2: Theorem 2 
SODA is responsive, i.e. 
never rewards a student 
for doing less well on an 
exam 

Remedy 3:  
It is not possible to 
purposefully perform 
above capacity on an 
exam.  
	
  

SODA is Strategy Proof 
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Chapter 4 – A Comparative Analysis of SODA’s Properties 

This chapter compares SODA to other matching mechanisms based on the 

following criteria: stability, multiple tests, fairness, responsiveness, and strategy 

proofness. As this chapter will explore, SODA is the only algorithm among the 

mechanisms we examine that is stable, uses multiple tests, is responsive, and (as we 

proposed in Chapter 3) is strategy proof. This chapter commences by defining each 

property and explaining its importance grounded in the possibility of a real-life 

application. In section 4.2, we evaluate relevant matching mechanisms according to the 

set criteria, providing simple examples of either fulfillment of or violations of the 

properties. This chapter does not consist of formal proofs but rather is intended to provide 

a more comprehensive, comparative look at SODA.  

 
4.1  The Criteria 

 
Stability:  

If there exists a student and a school who mutually prefer each other to their 

current matches, then that student-college pair can upset the matching by blocking. If no 

pair wants to block, then that matching is stable. Formally, there is no match such that 

some student A would rather be paired with college X than college Y, with which she is 

currently matched, and college X would rather be paired with student A than student B, a 

student who is currently assigned to X. If there is no such blocking pair, regardless of the 

specification of student and college preferences, then we say the mechanism is stable.  

Stability ensures the success of a given algorithm because no coalition, either one 

student-college pair or many pairs, has an incentive to block in order to achieve a more 
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preferred outcome. While we have thus far explained stability within the mathematical 

constructs of matching mechanisms, the property of stability is crucial for the success of 

any real-world application. Without stability, an assignment procedure will unravel. In 

reality, where agents are free to make agreements outside of a mechanism, stability is 

necessary in order to ensure participation. As explained by the Royal Swedish Academy 

of Sciences,  “from an economic point of view, stability formalizes an important aspect of 

idealized frictionless marketplaces,” going on to say that “if individuals have unlimited 

time and ability to strike deals with each other, then the outcome must be stable, or else 

some coalition would have an incentive to form and make its members better off” (Stable 

Allocations and the Practice of Market Design, 2012). In the case of a voluntary college 

admissions process similar to that of NIMP, lack of stability would translate to lack of 

involvement, jeopardizing the legitimacy of the process itself. Thus we choose stability as 

the first desirable property of any algorithm assigning students to colleges.       

 
Multiple Tests: 

We require that the algorithm allow for the use of multiple tests. The use of 

multiple tests is a definitional property. According to the parameters of an algorithm, it 

will either use one test (as in the case of the Serial Choice Algorithm with a single exam) 

or multiple tests (as in the case of SODA). In practice, however, allowing for multiple 

tests in and of itself does not constitute satisfaction of this property; we must also take 

into account the way that the test(s) interact with the procedure. 

Keeping in mind that the college admissions problem is an abstract representation 

of a real-life decision, this decision may include as many “tests” as there are institutions. 

“Tests” in the economic representation may translate to quantifiable aspects of students 
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as a school strives to build a dynamic incoming class. The use of multiple tests is also 

vital for the assumption that colleges’ preferences over students are strict. For instance, 

imagine two students receive exactly the same test score and have the same quantitative 

academic record (GPA)—this is where the importance of a qualitative “knife-edge” 

phenomenon of true preferences comes into play. College Preferences are based solely on 

test scores in this theoretical exploration; however, in reality, college admissions are 

based on much more. If colleges were to assign a points system to different admirable 

characteristics or faculties of a student – test scores (such as the SAT or ACT), 

extracurricular activities, personal interviews, recommendations, entrance essays, varying 

outside interests, or work experience, for instance – the “knife-edge” phenomenon 

discussed in Chapter 1 would then emerge. Distinctive characteristics of a student would 

play into each weighted points section, determining the quantitative score of the student 

on a generalizable scale. It is reasonable to think of a student’s TX score as the 

quantification of both qualitative and quantitative aspects on a weighted scale determined 

by college X.  

In addition, even if we take the concept of a test as face value, multiple tests are 

important to appeal to a wider range of potential applicants. Because of educational 

background, expertise, natural inclination, demographic, interest in a certain area of 

academics, and/or a host of other reasons, a student may prefer one test to another. For 

instance, the SAT and ACT have key differences causing some students to gravitate 

towards one or the other. According to the Princeton Review, the SAT has a stronger 

emphasis on vocabulary than the ACT, the ACT tests science while the SAT does not, 

and the ACT tests more advanced math concepts (The SAT vs. the ACT, 2015). 
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Depending on ones abilities, a student may perform better on the ACT or the SAT, but 

this depends on having the opportunity to choose. Moreover, even if only one test were 

used, such as the SAT, there would in practice be multiple tests employed if colleges 

weighted the components (math, reading, and writing) differently.  

 
Fairness:  

In order for an algorithm to be fair, a student who receives a higher test score than 

another student on the test used by their mutually preferred school cannot be denied 

admission to that school if the student with the lower test score has been accepted. 

Formally, when test scores generate college preferences, an assignment is fair if we 

cannot find a student S and a college C such that S prefers C to the college assigned to S 

and S has a higher score on the test used by C than some student assigned to C. As 

mentioned in Chapter 2, when test scores are perfectly consistent with college 

preferences, stability and fairness are interchangeable.   

People have a natural inclination towards fairness. From the first grade 

playground to compensation in the workplace, the intrinsic need to feel as if a process is 

fair follows us. This concept can be demonstrated by the ultimatum game in experimental 

economics. Each player is given a certain amount of money (or chips, coins, points, etc.) 

to split between him or herself  and another participant. It is a one-time offer – a “take it 

or leave it” scenario. The recipient of the offer is more likely to reject the sum if the 

amount offered is deemed “unfair” (Kagel, Kim, & Moser, 1996). Although it would be 

in each player’s best interest to take any sum of money offered, the concept of fairness 

overshadows this rational choice. This seemingly illogical decision demonstrates the 

psychological power of fairness in our behavior. While most economic theories weigh 
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fairness against other desirable properties, in the case of college admissions, participation 

would dwindle in the absence of fairness.  

The above example also hits on a more natural understanding of fairness: 

justifiability. If certain students or colleges have an unjustifiable advantage or 

disadvantage, the algorithm violates fairness on a visceral level. Acknowledging this, 

while we first and foremost evaluate the algorithm according to the formal definition, the 

evaluation touches on the colloquial definition as well.  

 
Responsiveness: 

Responsiveness, used interchangeably with positive responsiveness throughout 

the paper, formalizes the notion that an algorithm should reward students for performing 

to the best of their capability. As introduced earlier, an mechanism that assigns students 

to colleges is responsive if it never assigns a student to a college that she prefers to the 

one that she would be assigned if she had earned a higher score on any single exam, 

assuming no change in any student’s preferences and no change in any other test score.  

The connection between incentives and behavior is at the core of economics; it is 

also central to responsiveness. The right incentive structure is necessary to elicit the 

desired behavior – in this case maximal effort on all exams. If a particular algorithm does 

not always reward a student for performing her best on an exam, her motivation to do so 

will presumably diminish. The belief that one’s actions affect his or her future is 

positively correlated with motivation; the converse is encompassed by the psychological 

phenomenon “learned helplessness”, where subjects detach actions from outcomes, thus 

diminishing the motivation to escape aversive situations and undermining future 

motivation for related stimuli (Maier & Seligman, 1976). This phenomenon demonstrates 
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the importance of the connection between actions and outcomes, and it relates to positive 

responsiveness in the sense that a mechanism must ensure students feel as if their effort 

will yield a positive outcome in order to incentivize high performance on exams.    

Responsiveness also encompasses an aspect of fairness; if a student can benefit by 

receiving a lower test score on a test, it is unfair to the students who receive higher test 

scores for that student to be assigned a more preferred college. Because it is arguably 

unlikely for a student to try to manipulate the outcome by receiving a lower test score 

because of lack of information about other students’ test scores (asymmetric 

information), habitually performing to the best of one’s ability, pride, and so on, we focus 

on this aspect as a more serious concern.   

Responsiveness also addresses allocative efficiency. The purpose of any matching 

algorithm is to generate good matches – that is, matches that are beneficial to both parties 

to some extent. For college admissions, students who perform better should be matched 

with better schools (schools that the high preforming students presumably prefer).  

 
Strategy Proofness: 

In the context of the college admissions problem, an algorithm is strategy proof if 

neither the school nor the student has an incentive to deviate from truthful revelation of 

preferences; as examined in Chapter 3, if we define colleges’ preferences as equivalent to 

the ranking of student test scores, colleges do not have the capability to misrepresent 

preferences using SODA and CODA. However, for two-sided, many-to-one games in 

which both sides are able to manipulate preferences, there exists no stable mechanism 

that guarantees truthful revelation as a dominant strategy for both parties (Roth 1985). 

This research deviates from the bulk of the existing literature on the college admissions 
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problem by using test scores to eliminate the possibility of colleges manipulating 

preferences (in the context of SODA and CODA).  

Transparency and strategy proofness are deeply intertwined. If truthful revelation 

is the dominant strategy for all agents, it ensures that the system runs smoothly. As 

discussed in Chapter 1, truthful revelation acts to level the playing field. If agents, 

students or parents in the case of college admissions, are able to benefit by deviating from 

truthful revelation, it creates an unfair advantage for those who figure out how to 

successfully maneuver the system. Looking to the Boston mechanism, “naively truth-

telling students (or parents)” suffered the most because the algorithm is not strategy proof 

(Ehlers & Klaus, 2012).  As with any education proposition, equal opportunity is central. 

Strategy proofness guarantees that no student is at a systematic disadvantage because he 

or she lacks the social or financial capital necessary to manipulate the game. This is key.  

 
4.2  Other Algorithms 

 
Student Serial Choice (SSC with multiple tests): 

The rules of the game: There are tests T1, T2, …., TK where K is the total number of 

entrance exams. The tests are ordered randomly, with the number correlating to the 

arbitrary ordering. The student with the highest score on T1 goes first and chooses her 

most-preferred college. The student with the highest score on T2 then goes and chooses 

her most-preferred college. The pattern continues until the student with the highest test 

score on TK chooses her most preferred college. If a college reaches its capacity of qC 

students at any point, it is taken off the menu of choices.  The process begins again as the 

student with the second highest test score on T1 chooses her most preferred college 
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among the remaining schools. The student with the next highest score on T2 then chooses 

her most preferred college, and so on until the student with the second highest score on 

TK chooses her most preferred school. This pattern continues as the algorithm rotates 

through the students with the next highest scores on the randomly ordered tests. When a 

student chooses a school, the assignment is final. The algorithm terminates when all 

students have been assigned to a college or all colleges have reached their capacity. 

 
Stability: Imagine there are colleges C1, C2, C3, and C4 where each has a capacity of two 

students. Suppose that C2 uses T4 (similar to how one school focused on the quantitative 

score rather than the verbal score in Chapter 2’s example), and student B receives the 

highest test score on T4. Student B is fourth to choose her most preferred college 

according to the random ordering of tests, and her most preferred college is C2. Suppose 

that the students with the highest test scores on tests T1 and T2 both choose C2. C2 has 

then reached its capacity of two students and is taken off the menu. Student B must then 

choose the school ranked just below C2 on her preference list. However, C2 and B 

mutually prefer each other to their current matches. There exists a student-college pair, 

C2 and B, which could benefit by blocking, thus violating stability. 

 
Multiple Tests: This algorithm consists of multiple tests; however, the arbitrary ranking 

of tests undermines the importance of this property. Additionally, the facts that colleges 

do not have a say in final assignments and that each college’s preferred test is not taken 

into account diminishes the use of multiple tests.  

 
Fairness: The formal definition of fairness that “we cannot find a student S and a college 

C such that S prefers C to the college assigned to S and S has a higher score on the test 
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used by C than some student assigned to C” focuses on the ranking of student’s test 

scores on the specific test used by that college. In this sense, the ranking is fair. Because 

the algorithm rotates through the highest scores, then the second highest scores, and so 

on, it is not possible for a student with a lower score on the same test to be assigned to a 

preferred college first. However, this algorithm violates fairness in the colloquial sense: 

the arbitrary ordering of tests is unjustifiable. The students who take test T1 have a 

systematic advantage over all other students who took any other test. Students who take 

T2 similarly have an advantage all students who took any test other than T1, and so on. 

This structural disadvantage is not based on merit, and thus violates a fundamental 

definition of fairness.   

 
Responsive: SSC with multiple tests is responsive. A student can never benefit by doing 

worse on an exam because doing so bumps her down to the next rotation of school 

assignments; she would never receive admission to a more preferred college by receiving 

a lower test score on an exam. While we do not provide a formal proof here, the intuition 

is sufficient. If each student’s “turn” to choose schools is according to the highest test 

score in the first rotation, the second highest in the next, and so on, a student cannot 

benefit by getting a lower score on an exam because his or her turn would come later, and 

he or she may have a smaller list of schools from which to choose. Satisfying the formal 

definition of fairness, however, does not account for the fact that the tests are arbitrarily 

ranked (covered in fairness).  

 
Strategy Proof: No student can benefit by deviating from truthful revelation because an 

assignment is final once a student chooses her (most preferred) school. If a student 
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instead chose a school that was not her most preferred, she would be punishing herself by 

deviating from truthful revelation. Schools cannot misrepresent their preferences, as their 

preferences are not taken into account. While the mechanism itself is strategy proof, we 

must remember that there exists a coalition that could benefit by cooperating outside of 

this procedure. Because the algorithm is not stable, unless participation is mandatory, 

students and colleges can benefit deciding to make arrangements outside of the 

mechanism. A strategy for some would then be to ditch the algorithm all together. The 

violation of stability discussed above trumps the benefit of within-mechanism strategy 

proofness.   

 
College Serial Choice (CCS with multiple tests): 

 
The rules of the game: C1, C2, … , Cm are the m colleges, which have been ordered 

randomly with the subscript corresponding to the institution’s position in the order. The 

college C1 goes first, choosing the student with the highest score on the test used by C1. 

College C2 goes next and chooses the student with the highest score on the test used by 

C2 among the remaining students, and so on until each college has chosen a student. The 

process then begins again as C1 chooses the student with the highest remaining test score 

on the test used by C1. C2 then chooses the student with the highest remaining test score 

on its preferred test, and so on. This pattern continues as the algorithm rotates through the 

randomly ordered colleges each choosing their most preferred student among the 

remaining students. The assignments are final, and when a college reaches its capacity, it 

ceases to participate.  
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Stability: Imagine there are colleges C1, C2, and C3 each with room for one student. 

Colleges C1 and C3 admit students based on their test scores on test X (TX). C2 admits 

students based on test Y (TY). Suppose a student B receives the highest test score on TX, 

and B’s most preferred college is C3. Because C1 chooses its most preferred student first, 

the mechanism assigns B to C1. C2 chooses the student with the highest test score on TY. 

C3 would then choose the student with the second highest test score on TX. However, this 

leaves a student-college pair that could benefit by blocking. There exists a student B who 

would rather be paired with C3 than her current match C1, and a college C3 who prefers B 

to the student with the second highest test score on TX. Thus, CSC is not stable.   

 
Multiple Tests: Yes, this allows for multiple tests.  

 
Fairness: Fairness mirrors stability. According to the formal definition, we can find a 

student and a college such that the student prefers the college to the one assigned to her 

by the mechanism, and that student has a higher test score on the test used by the college 

than some other student who is assigned to that college. The example used above for the 

violation of stability can be used to demonstrate a violation of fairness. In addition to 

violating the strict definition of fairness, this algorithm violates a fundamental 

understanding fairness: the random ordering of colleges is not justifiable. Once again, the 

ordering of schools is not earned; devoid of a merit-based system to determine the 

ordering of schools, CSC is not fair in both formally and intuitively.  

 
Responsiveness: CSC is not responsive. Given the situation where there are three 

colleges, C1, C2, and C3 each with room for one student, and colleges C1 and C3 admit 

based on TX while C2 admits based on TY. Suppose student B prefers C3 to C1. It is 
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possible for student B to get accepted into a more preferred school by receiving a lower 

test score on TX. Let αH be the application of CSC in which B receives a higher test score 

TX. Let αL be the application of CSC where the only change is that student B receives a 

lower test score on TX. Suppose that in αH student B receives the highest test score on TX. 

C1 would go first and choose B. Suppose that in αL B’s test score changes such that there 

is one student A with a test score that surpasses that of student B’s lower TX score. B 

would then have the second highest TX score. C1 chooses the student with the highest test 

score on TX, student A. C2 chooses the student with the highest test score on TY. Then C3 

chooses the student among those remaining with the highest test score on TX, or student 

B. Student B, who prefers C3 to C1 receives a more preferable assignment in αL than αH, 

thus violating responsiveness.  

 
Strategy Proof: From the perspective of the schools, they cannot benefit by 

misrepresenting their preferences because the assignments are final, and they are always 

choosing their most preferred student among those remaining. If schools were to deviate 

from truthful revelation, they would be choosing students whom they prefer less than 

another possible assignment. Thus, the dominant strategy for schools is truthful 

revelation. The students, however, could manipulate college preferences by purposefully 

receiving a lower test score in order to get a preferred matching. While this is highly 

unlikely considering asymmetry of information and the personal pride that results from 

performing one’s best, it is possible. Thus, CSC is not strategy proof.  

 
Arbitrary Assignment (AA with multiple tests): 
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The rules of the game: Students and colleges are randomly matched. No college can be 

matched with more than its capacity of students. Student preferences and test scores are 

not taken into account.  

 
Stability: Suppose there are three schools C1, C2, and C3 each with room for one student. 

Suppose among the students there exists a student B whose most preferred college is C2, 

and student B is C2’s most preferred student. Because the assignments are random, it is 

possible that B is assigned to C1. C2 and B would then benefit by blocking, thus violating 

stability. Although it is possible that the random matching is stable, the algorithm does 

not guarantee stability. 

 
Multiple Tests:  Yes, there are multiple tests; however, the fact that the algorithm does 

not take into account test scores entirely diminishes the importance of test scores, let 

alone the opportunity to take multiple tests.  

 
Fairness: Arbitrary Assignment is neither fair according to the formal definition nor fair 

according to a fundamental understanding. Similar to stability, imagine three schools C1, 

C2, and C3 each with room for one student. Suppose C2 prefers student B to student A 

because B receives a higher test score on the test used by C2. Suppose that student B 

similarly prefers C2 to any other college. It is possible that by random assignment, student 

A is assigned to C2, and student B is assigned to C1. Student B received a higher test 

score than student A and prefers C2 to her current match; thus the matching is unfair. In 

addition, Arbitrary Assignment is not based on merit. Just as the random ordering of 

colleges and test scores is not justifiable for SSC and CSC, respectively, the random 

assignment of students to colleges is not justifiable.  
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Responsive: While a student cannot benefit by receiving a lower test score, one cannot 

benefit by receiving a higher test score either. The algorithm neither rewards nor punishes 

students for receiving a lower test score because test scores hold no weight in the 

outcome.  It is possible for a student to be assigned to a preferred school with a lower test 

score because the assignment is random. Thus, AA is not responsive.  

 
Strategy Proofness: Yes, this algorithm is strategy proof. An agent cannot benefit by 

deviating from truthful revelation, nor can an agent be punished for deviating from 

truthful preferences. Because preferences and test scores are not taken into account, the 

algorithm requires no strategy and, thus, is necessarily strategy proof.  

 
Serial Choice Algorithm (SCA with a single test): 

 
The rules of the game: A single test is used to determine student rankings. College 

preferences are entirely determined by the students’ test scores on this single test. The 

student with the highest test score declares her most preferred college and is matched 

with that college. The assignment is final. The student with the second highest test score 

then chooses her most preferred college and is matched with that college. Going in order 

from highest to lowest test score, each student chooses his or her most preferred college 

of those remaining. Each choice is final if the school accepts the proposal. Once a college 

has reached its capacity of qC students, students can no longer be matched with that 

school. In other words, when a school is full, it remains full, and it is no longer an 

available option. The algorithm terminates when every school reaches its capacity or 

every student has been matched with a school.  
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Stability: SCA always yields a stable matching. Students propose to colleges in order of 

their test scores, highest to lowest. Because the test scores determine college preferences, 

each time a student chooses a college, it is the college’s most preferred student among 

those remaining, and by definition, it is the student’s most preferred school among those 

remaining. If B prefers college C but is assigned to college D then C must have been 

unavailable when it was B’s turn to choose. This means that all the students assigned to C 

have higher test scores than B, and thus B and C cannot block. In fact, the SCA with a 

single test yields the only stable outcome. Thus SCA=SODA=CODA with a single test. 

 Let S1, S2, … , Sn denote the students, with S1 choosing before S2, who chooses 

before S3, and so on. Let Ci be the college assigned to Si by the SCA. (Of course we can 

have Ci = Cj even if i ≠ j.) Every stable outcome must have S1 matched with C1 because 

C1 is S1’s most-preferred school, and S1 is C1’s most-preferred student. Suppose that 

every stable assignment must have Si assigned to Ci for all i ≤ t. Then every stable 

assignment must have St+1 assigned to Ct+1. All of the colleges preferred to Ct+1 by St+1 

must be full of students preferred to Ct+1 by those colleges. In fact, those colleges must be 

full of students that are assigned to those colleges at every stable outcome. Therefore, 

every stable assignment must assign St+1 to Ct+1. Otherwise St+1 would be assigned to a 

college D that ranks below Ct+1 in the preference ordering of St+1, and Ct+1 would prefer 

St+1 to any student Sj that took the place of Ct+1 because we would have to have j > t+1 if 

the outcome were stable. (And Ct+1 would prefer to enroll St+1 to having any empty seat.) 

 
Multiple Tests: The major, and only, downfall of this algorithm according to these 

properties is that it uses a single test. 
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Fairness: Stability and fairness are interchangeable when the test scores of the students 

determine the preferences of the college (as was fully explained in Chapter 2). Mirroring 

the explanation of stability above, it is impossible for a student with a lower test score to 

be assigned to her preferred college over a student with a higher test score who prefers 

the same college because the student with the higher test score chooses first. (And she 

will presumably choose the remaining college that she most prefers.)  

 
Responsiveness: This algorithm is the most blatantly responsive. Students are strictly 

rewarded for getting higher test scores because they have priority over students who 

receive lower test scores. Receiving a lower test score “would only result in a lower 

ranking, and a later choice, perhaps from a smaller list of schools” (Campbell, 2006). In 

other words, students have the incentive to get the highest possible test score in order to 

rank higher, choose earlier, and have the largest list of schools from which to choose.  

 
Strategy Poof: Yes, SCA is strategy proof. As covered in each of the above explanations, 

the student has the incentive to get the highest test score possible, and it is the dominant 

strategy for the student to truthfully reveal her most preferred school at the time of her 

choice. These two components constitute student-side strategy proofness. Can a college 

benefit by misrepresenting its preferences? Or, in the context of this algorithm, can a 

school benefit by denying acceptance to a student who proposes? No. By denying a 

student’s proposal, the school would be saving a seat for a later priority student with a 

lower test score. Thus no student or college can benefit from misrepresenting preferences, 

and no student can benefit by lowering her test score. In addition, the application of 
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SODA and CODA generate the same outcome; in other words, there is only one stable 

matching, and it is strategy proof.  

 
4.3 – Summarizing the Algorithms 

Pulling from the information in Chapters 2, 3, and 4, the below chart summarizes 

the algorithms according the set criteria. As previous chapters have shown, SODA is the 

only algorithm that is stable, uses multiple tests, is fair, is positively responsive, and may 

be strategy proof.  

 
 Stable Multiple 

Tests 
Fair Responsive Strategy 

Proof 
SODA ✖ ✖ ✖ ✖ ✖ 
CODA ✖ ✖ ✖   
SSC  ✖  ✖ ✖ 
CSC  ✖    
AA  ✖   ✖ 
SCA ✖  ✖ ✖ ✖ 
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Chapter 5 – Conclusion 

Since the deferred acceptance algorithm’s formal introduction by Gale and 

Shapley in 1962, its application to a theoretical marriage market has transcended into the 

reality of kidney transplants, school choice, the National Residency Matching Program, 

and college admissions –the focus of this research. This paper provided evidence that the 

Student Optimal Deferred Acceptable algorithm is characterized by a set of desirable 

properties including stability, fairness, and positive responsiveness for any number of 

students, colleges, and tests. Using the framework of the marriage problem discussed in 

Chapter 1, Chapter 2 explored a simple example of the case of two students, two colleges, 

and two tests; Chapter 3 built upon this, proving that SODA is responsive in the general 

case. Providing a comparative context, Chapter 4 examined alternative algorithms 

according to the criteria of stability, multiple tests, fairness, responsiveness, and strategy 

proofness. Among the mechanisms we explore, SODA is the only one using multiple 

tests that always yields an outcome that is stable, fair, responsive, and strategy proof. 

However, we have fallen into Gale and Shapley’s (1962) trap as: 

The reader who has followed us this far has doubtless noticed a trend in 

our discussion. In making special assumptions needed in order to analyze 

our problem mathematically, we necessarily moved further away from the 

original college admission question, and eventually… abandoned reality 

altogether and entered the world of mathematical make believe. 

The most conspicuous assumption is that using test scores to determine college 

preferences is justified based on merit, and merit alone. The responsiveness property of 

the SODA algorithm addresses allocative efficiency, fairness, and incentives within the 
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bounds of the mechanism; however, we must consider the intersection between allocative 

efficiency and the reproduction of social class in terms of test scores. As long as test 

scores are factored into the college admissions process, regardless of their weight among 

other characteristics, this issue needs to be addressed.  

Socioeconomic status and standardized test scores are frighteningly positively 

correlated. When SAT component scores are broken down by family income, scores 

increase significantly with each $20,000 increase income. The mean Critical Reading, 

Mathematics, and Writing scores for students in the $0-$20,000 income range are 435, 

462, and 429, respectively; for students in the “more than $200,000” family income 

bracket, the Critical Reading, Mathematics, and Writing scores are 565, 586, and 563, 

respectively (College Board, 2013). This is hardly surprising considering the intersecting 

inequalities that feed into disparities in academic achievement. So what does this mean in 

terms of SODA? Rich kids get assigned to more preferable schools. Allocatively efficient 

algorithms seek to create good matches with “better” students attending “better” schools; 

however, if preference orderings are strictly based on standardized test scores, the 

mechanism blatantly violates equal access to education, thus fueling the opportunity gap.   

The “allocatively efficient” matching mechanism, devoid of historical, 

demographic, and socio-economic considerations then becomes an exclusionary 

procedure for the reproduction of social class via education. Mathematically sound does 

not constitute morally sound. In future research, we need to add measures to the SODA 

algorithm to address the structural disadvantages of certain students; this research acts 

starting point.  
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